
A complete characterization of phase space measurements

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys. A: Math. Gen. 37 5057

(http://iopscience.iop.org/0305-4470/37/18/010)

Download details:

IP Address: 171.66.16.90

The article was downloaded on 02/06/2010 at 17:58

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/37/18
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 37 (2004) 5057–5066 PII: S0305-4470(04)70407-2

A complete characterization of phase space
measurements

C Carmeli1, G Cassinelli1, E DeVito2, A Toigo1 and B Vacchini3
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Abstract
We characterize all the phase space measurements for a non-relativistic particle.

PACS numbers: 03.65.Bz, 03.65.Db, 02.20.−a

1. Introduction

In the usual framework of quantum mechanics, the states (density matrices) of a physical
system are described by positive trace class trace one operators acting on a Hilbert space H,
and the physical quantities (observables) are associated with self-adjoint operators on H in
such a way that Tr(SA) is the expectation value of the observable A when the system is in the
state S (here Tr denotes the trace).

Nevertheless, a careful analysis of measurement processes shows that one has to generalize
suitably the concept of observable for both theoretical and experimental reasons [1–4]. These
generalized observables are described as mathematical objects by positive operator valued
measures (POVM). In this framework, one can describe measurements of quantities such as
angle of rotation, phase and arrival times, as well as joint measurements of quantities such
as position and momentum, incompatible according to the standard textbook formulation of
quantum mechanics.

In order to give a physical meaning to the observables one invokes some properties of
covariance with respect to a symmetry group. The requirement of covariance is a strong
constraint: it allows us to select the measurements of physical interest among the larger class
of all the possible generalized observables. As recently proved, from this principle follows not
only the characterization of generalized observables, but also the determination of generators
of quantum dynamical semigroups [5–7].
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In this paper, we classify all the possible joint observables of position and momentum that
arise from the request of covariance with respect to the Galilei group. In the literature these
observables are usually called phase space measurements for a non-relativistic particle. We
restrict our attention to the isochronous Galilei group since the POVMs covariant with respect
to this group have a clear and transparent physical meaning. Moreover the technical treatment
(compare proposition 4) is rather simple. We have in mind the possibility of treating more
general spacetime groups (e.g., Poincaré, de Sitter).

The quest for the characterization of phase space measurements in quantum mechanics
goes back to the 1970s, and in particular to the seminal works of Ali and Prugovečki [8] and
Holevo [2, 9]; the first is concerned with the representation of quantum mechanics on fuzzy
phase space and the second with a general treatment of quantum measurements covariant
with respect to a given symmetry group. The result presented in this paper, which relies on
a previous work on the characterization of POVM covariant with respect to an irreducible
representation of a symmetry group [10], essentially confirms the previous ones showing,
along a different line of proof, that indeed all phase space measurements for a non-relativistic
particle are expressed in terms of an operator-valued density, thus releasing the more restrictive
assumptions considered in [8] (see also [3]) and putting into evidence with respect to [2, 9]
that square-integrability of the considered representation is both a sufficient and necessary
condition.

The paper is organized in the following way. In section 2, we briefly review the physical
motivations that justify the introduction of covariant positive operator valued measures from
the point of view of quantum measurement theory. In section 3, we give the complete
classification of the phase space measurements for a non-relativistic particle. The proof of the
result is given in section 4.

2. A brief review of POVMs

For an exhaustive exposition of the theory of covariant POVMs from the perspective of
quantum measurement theory, one can refer to [2–4]. However, for the reader’s convenience,
we briefly recall the main steps which lead quite naturally to the idea of covariant POVM.

First of all, we recall the mathematical definition of POVM.

Definition 1. Let X be a metric space and H a (complex separable) Hilbert space. A map E
from the Borel subsets B(X) of X into the set L(H) of bounded operators on H such that

(i) 〈φ,E(Z)φ〉 � 0 ∀ φ ∈ H, Z ∈ B(X)

(ii) E(X) = I

(iii) E(∪iZi) = ∑
i E(Zi) for all disjoint sequences of subsets (the series converging in the

weak sense),

is called a (normalized) positive operator valued measure (POVM) based on X.

The role of POVMs in quantum mechanics is justified by the following observation. Given
a physical quantity described by a self-adjoint operator A, it is well known how one obtains
the probability distribution of the outcomes of A. Indeed by the spectral theorem, A uniquely
defines a projection-valued measure P, i.e. a map

P : B(R) → L(H) (1)

from the Borel subsets B(R) of R into the space of bounded operators L(H) on H satisfying
the following three conditions:
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(i) P(Z) is an orthogonal projection operator for all Z ∈ B(R), that is,

P(Z) = P ∗(Z) = P(Z)2 ∀ Z ∈ B(R) (2)

(ii) P(R) = I

(iii) P(∪iZi) = ∑
i P (Zi) for all disjoint sequences of subsets (the series converging in the

weak sense).

Comparing with definition 1, one easily checks that a projection-valued measure is a particular
case of POVM. With this notation, the physical content of quantum theory is based on the
following assumption: if one measures the observable A when the system is in a state S, the
probability to have an outcome in Z is given by Tr[SP (Z)].

The fact that P is a projection-valued measure assures that the map

Z �→ Tr[SP (Z)] =: µA
S (Z) (3)

is a probability distribution on R. Clearly, the physical content of the observable A is
completely given by the map

S �→ µA
S

from the set of states into the space of probability measure on R (the above map is usually
called a measurement).

The key remark is that in order that equation (3) defines a probability measure, it is
sufficient and necessary to replace equation (2) with the weaker condition that P(Z) is a
positive operator, that is

〈φ, P (Z)φ〉 � 0 ∀ φ ∈ H Z ∈ B(R). (4)

Then the corresponding map Z �→ P(Z) will be a positive operator valued measure on R.
Moreover, in order to take into account joint measurements, another generalization

suggested by this approach consists in assuming that the space of measurement outcomes
is an arbitrary metric space X instead of R. For example, the joint measurements of position
along the three axes of the Euclidean space defines a projection measure on X = R3.

Given a POVM E on the space X, by the above discussion, it is reasonable to define a
generalized measurement associated with E as a map from the set of states to the space of
probability measures on X

S �→ µE
S

with µE
S defined according to equation (3)

Z �→ Tr[SE(Z)] = µE
S (Z).

This mathematical framework can be further enriched by introducing the concept of
POVM covariant with respect to a symmetry group. From a mathematical point of view, one
has the following definition.

Definition 2. Let G be a group that acts both on H by means of a projective unitary
representation U and on the outcome space X by a geometrical (left) action α. A POVM E on
X is said to be covariant with respect to G if, for all g ∈ G,

UgE(Z)U ∗
g = E(αg(Z)) ∀ Z ∈ B(X). (5)

In order to explain the physical meaning of equation (5), let us fix the ideas on a simple
example and give a natural definition of a position measurement on the real line R, on which R

itself acts as the group of translations. If x ∈ R, its action on an element y ∈ R is αx(y) = x+y.
If S is a state, denote with xS the translate of S by x. In order that a measurement E be a



5060 C Carmeli et al

position measurement, the probability distribution of the outcomes of E performed on S and
xS should satisfy the following relation:

µE
xS(Z + x) = µE

S (Z) ∀ Z ∈ B(R) x ∈ R. (6)

In the more general setting in which a generic transformation group G acts both on the
quantum system and on the outcome space X, the above condition reads

µE
gS(αg(Z)) = µE

S (Z) ∀ Z ∈ B(X), g ∈ G. (7)

Since the action of g ∈ G on the state S is given by

gS = UgSU ∗
g

a straightforward calculation shows that equations (3) and (7) imply the covariance
condition (5).

In particular, if X is the (classical) phase space of the system on which the isochronous
Galilei group acts, the POVMs based on X and satisfying equation (5) are called phase space
measurements.

3. Phase space measurements

In the present section, we characterize all the phase space measurements of a non-relativistic
particle of mass m. For the sake of simplicity we restrict to the spinless case, the extension to
the general case being straightforward.

Every observer describes the phase space associated with a free particle as X = R3× P3.
The symmetry group is the isochronous Galilei group G = (R3 × V3) ×′ SO(3), where R3 is
the three-dimensional vector group of space translations, V3 is the three-dimensional vector
group of Galilean boosts and SO(3) is the group of rotations (connected with the identity). In
particular, the composition law of G is given by

(
a, 
v,R)(
a′, 
v′, R′) = (
a + R 
a′, 
v + R 
v′, RR′).

The action of an element g = (
a, 
v,R) ∈ G on a point ( 
q, 
p) ∈ X is given by

αg( 
q, 
p) = (
a + R 
q,m
v + R 
p). (8)

The Hilbert space of a non-relativistic spinless particle of mass m is H = L2(R3, d 
x),
and G acts on H by means of the irreducible projective unitary representation U given by

[U(
a,
v,R)φ]( 
x) = eim
v·( 
x−
a)φ(R−1( 
x − 
a)). (9)

With this notation, the problem of determining the phase space measurements reduces to the
characterization of the POVM on X covariant with respect to U. The following theorem faces
up this problem.

Theorem 3. Let T ∈ B(H) be a positive trace class trace one operator such that

T U(
0,
0,R) = U(
0,
0,R)T ∀ R ∈ SO(3) (10)

i.e. T is a density matrix invariant under rotations. For all Z ∈ B(X), let ET (Z) be the operator

ET (Z) = 1

(2π)3

∫
Z

U
(
a,


p
m

,I )
T U ∗

(
a,

p
m

,I )
d
a d 
p (11)

where the integral is understood in the weak sense.
The map Z �→ ET (Z) is a POVM on X covariant with respect to U.
Conversely, if E is a POVM on X covariant with respect to U, then there exists a density

matrix invariant under rotations such that E = ET .
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The proof of the above theorem (which is a special case of a more general result [10]) is
given in the next section, and it is based on the fact that G acts transitively on X, i.e. given any
x, y ∈ X it is always possible to find g ∈ G such that αg(x) = y. In particular, the stability
subgroup at the origin (
0, 
0), i.e. the subgroup of elements of G acting trivially on the origin,
is the compact group SO(3), so that X is isomorphic to the quotient space G/SO(3). The
essential property involved in the proof of theorem 3 is the fact that U is square-integrable
(see the definition in the next section). We will prove that square-integrability is a necessary
and sufficient condition for the existence of covariant POVMs, when the stabilizer is compact.

Equation (11) can obviously also be written in terms of the Weyl operators according to

ET (Z) = 1

(2π)3

∫
Z

ei( 
p· 
Q−
a· 
P )T e−i( 
p· 
Q−
a· 
P) d
a d 
p

where 
Q and 
P denote position and momentum operators acting on L2(R3, d 
x).
We now characterize the positive trace class trace one operators T satisfying

equation (10). We have the factorization

L2(R3, d 
x) = L2(S2, d�) ⊗ L2(R+, r
2 dr).

Denoting with l the representation of SO(3) acting on L2(S2, d�) by left translations, we
have

U |SO(3) = l ⊗ I.

The representation (l, L2(S2, d�)) decomposes into

L2(S2, d�) =
⊕
��0

M�

where each irreducible inequivalent subspace M� is generated by the spherical harmonics
(Y�m)−��m��. We have

L2(R3, d 
x) =

⊕

��0

M�


 ⊗ L2(R+, r

2 dr) =
⊕
��0

(M� ⊗ L2(R+, r
2 dr)).

Let P� : L2(S2, d�) −→ L2(S2, d�) be the orthogonal projection onto the subspace M�.
If T intertwines l ⊗ I , one has

T (P� ⊗ I ) = (P� ⊗ I )T

where P� ⊗ I projects onto M� ⊗ L2(R+, r
2 dr). Given Hilbert spaces H1 and H2 and

an irreducible representation (π,K), a standard result asserts that C
(
π ⊗ IH1 , π ⊗ IH2

) =
IK ⊗ L(H1,H2). Since M� is irreducible, this implies

T (P� ⊗ I ) = P� ⊗ T�

with T� ∈ L(L2(R+, r
2 dr)). We then have

T =
∑

�

T (P� ⊗ I ) =
∑

�

P� ⊗ T�.

In the last expression, T is a positive trace one operator if and only if each T� is positive and

1 ≡
∑

�

dim M� Tr T� =
∑

�

(2� + 1) Tr T�. (12)

It follows that the operators T associated with the U-covariant POVMs M by equation (11) are
all the operators of the form

T =
∑

�

P� ⊗ T� (13)

with T� positive trace class operators satisfying equation (12).
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4. Proof of theorem 3

We prove theorem 3 in two steps. First, given an arbitrary topological group G and a compact
subgroup H, we characterize all the POVMs based on the quotient space G/H and covariant
with respect to an irreducible (ordinary) representation of G. Then, we apply the above result to
our problem lifting the projective unitary representation U of the Galilei group to an (ordinary)
unitary representation of the central extension Gω of the Galilei group defined by the multiplier
ω of U.

From now on, let G be a unimodular locally compact second countable topological group
and H be a compact subgroup of G. We denote by

G  g �−→ π(g) = ġ ∈ G/H

the canonical projection onto the quotient space G/H . Let µG and µH be invariant measures
on G and H, respectively, with µH(H) = 1. Due to the compactness of H, there exists a
G-invariant measure µG/H on G/H such that the following measure decomposition holds:∫

G

f (g) dµG(g) =
∫

G/H

dµG/H (ġ)

∫
H

f (gh) dµH (h) (14)

for all f ∈ L1(G,µG).
Let U be an irreducible unitary representation U of G acting on the Hilbert space H. We

recall that U is said to be square-integrable if there exists a nonzero vector φ ∈ H such that∫
G

|〈φ,Ugφ〉H|2 dµG(g) < +∞.

If the above condition holds, there exists a constant dU > 0, called formal degree, such that
for all φ ∈ H ∫

G

|〈φ,Ugφ〉H|2 dµG(g) = 1

dU

‖φ‖4.

Finally, all the integrals of operator-valued functions (as, for example, in equation (15)
below) are understood in the weak sense.

We need the following result which is proved in [10]. �

Proposition 4. Assume that U is square-integrable with formal degree dU and let T be positive
trace class trace one operator T ∈ B(H). The map

B(G)  Z̃ �→ ẼT (Z̃) = dU

∫
Z̃

UgT U ∗
g dµG(g) (15)

defines a POVM ẼT on G covariant with respect to U.
Conversely, if Ẽ is a POVM on G covariant with respect to U, then U is square-integrable

and there is a trace class positive operator T ∈ B(H) with trace one such that Ẽ = ẼT .

Now we extend the above result to covariant POVMs based on G/H .

Corollary 5. Assume that U is a square-integrable representation with formal degree dU and
let T be a trace class positive operator T ∈ B(H) with trace one such that

T Uh = UhT ∀ h ∈ H. (16)

Then the map

B(G/H)  Z �→ ET (Z) = dU

∫
Z

UgT U ∗
g dµG/H (ġ) (17)

defines a POVM ET on G/H covariant with respect to U.
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Conversely, if E is a POVM on G/H covariant with respect to U, then U is square-
integrable and there is a trace class positive operator T ∈ B(H) with trace one and commuting
with U |H such that E = ET .

Proof. Assume that U is square-integrable and let T ∈B(H) as in the statement of the corollary.
By means of equation (15) T defines a POVM ẼT based on G and covariant with respect
to U. For all Z ∈ B(G/H) let

ET (Z) = ẼT (π−1(Z)).

Clearly, ET is a POVM on G/H covariant with respect to U. Moreover, denoting with χZ the
characteristic function of Z,

ET (Z) = dU

∫
G

χZ(π(g))UgT U ∗
g dµG(g)

(equation (14)) = dU

∫
G/H

dµG/H (ġ)

∫
H

χZ(π(gh))UghT U ∗
gh dµH (h)

(equation (16)) = dU

∫
G/H

dµG/H (ġ)χZ(ġ)UgT U ∗
g

that is equation (17) holds.
Conversely, let E be a POVM on G/H and covariant with respect to U. For all Z̃ ∈ B(G),

let lZ̃ be the function on G given by

lZ̃(g) = µH (g−1Z̃ ∩ H) =
∫

H

χZ̃(gh) dµH (h).

Clearly, lZ̃ is a positive measurable function bounded by 1 and, since µH is invariant, for all
h ∈ H, lZ̃(gh) = lZ̃(g). It follows that there is a positive measurable bounded function �Z̃ on
G/H such that lZ̃ = �Z̃ ◦ π .

Define the operator Ẽ(Z̃) by means of

Ẽ(Z̃) =
∫

G/H

�Z̃(ġ) dE(ġ)

which is well defined since �Z̃ is bounded.
We claim that Z̃ �→ Ẽ(Z̃) is a POVM on G covariant with respect to U. Clearly, since �Z̃ is

positive, Ẽ(Z̃) is a positive operator. Recalling that �G = 1, one has Ẽ(G) = I . Now let
(Z̃i)i a disjoint sequence of B(G) and Z̃ = ∪i Z̃i . Given g ∈ G, since (g−1Z̃i ∩ H)i is a
disjoint sequence of B(H) and g−1Z̃ ∩ H = ∪i (g

−1Z̃i ∩ H), then �Z̃ = ∑
i �Z̃i

, where the
series converges pointwise. Let φ ∈ H, by monotone convergence theorem, one has that

〈φ, Ẽ(Z̃)φ〉 =
∑

i

〈φ, Ẽ(Z̃i)φ〉.

Finally, let g1 ∈ G, then

Ẽ(g1Z̃) =
∫

G/H

µH (g−1g1Z̃ ∩ H) dE(ġ)

(ġ �→ g1ġ) =
∫

G/H

µH(g−1Z̃ ∩ H)Ug1 dE(ġ)U ∗
g1

= Ug1Ẽ(Z̃)U ∗
g1

where we used the fact that E is covariant.
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By means of proposition 4, U is square-integrable and there is a positive trace class
operator one trace T such that

Ẽ(Z̃) = dU

∫
Z̃

UgT U ∗
g dµG(g). (18)

We now show that T satisfies equation (16). First of all we claim that, given h ∈ H and
Z̃ ∈ B(G),

Ẽ(Z̃h) = Ẽ(Z̃). (19)

Indeed, since H is compact, µH is both left and right invariant, so that

µH (g−1Z̃h ∩ H) = µH ((g−1Z̃ ∩ H)h) = µH(g−1Z̃ ∩ H)

and, hence, �Z̃ = �Z̃h. By definition of Ẽ(Z̃), equation (19) easily follows. Fixed h ∈ H , by
means of equations (18) and (19), one has that∫

Z̃

UgT U ∗
g dµG(g) =

∫
Z̃h

UgT U ∗
g dµG(g) (g �→ gh) =

∫
Z̃

UghT U ∗
gh dµG(g)

where we used the fact that G is unimodular. Since the equality holds for all Z̃ ∈ B(G), then,
for µG-almost all g ∈ G,

UgT U ∗
g = UgUhT U ∗

hU ∗
g

where the equality holds in the weak sense. Since both sides are continuous functions of g,
the equality holds everywhere and equation (16) follows.

Let now Z ∈ B(G/H). Since

g−1π−1(Z) ∩ H =
{
H if gH ∈ Z

∅ if gH �∈ Z

then �π−1(Z) = χZ and Ẽ(π−1(Z)) = E(Z). Reasoning as in the first part of the proof one
has that E = ET . �

Now we come back to the Galilei group G and to the projective unitary representation U
of G associated with a spinless particle of mass m. We recall that projective means that for all
g1, g2 ∈ G

Ug1Ug2 = ω(g1, g2)Ug1g2

where ω is the multiplier given by

ω((
a, 
v,R), (
a′, 
v′, R′)) = eim
v·R 
a′
.

We extend U to a unitary representation of the central extension Gω of G associated with the
multiplier ω (see, for example, [11]). Let T = {z ∈ C : |z| = 1} be the multiplicative group
of the torus. The group Gω is the product T × G with the composition law

(z, 
a, 
v,R)(z′, 
a′, 
v′, R′) = (zz′ eim
v·R 
a′
, 
a + R 
a′, 
v + R 
v′, RR′).

In particular, Gω acts transitively on X by means of

α̃(z,
a,
v,R)( 
q, 
p) = (
a + R 
q,m
v + R 
p) (20)

and the stability subgroup at the origin is the compact subgroup H = T ×SO(3). In particular,
X is isomorphic to Gω/H by means of

( 
q, 
p) �→ π

(
1, 
q,


p
m

, I

)
(21)

where π : Gω −→ Gω/H is the canonical projection.
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The irreducible projective representation U lifts to an irreducible unitary representation
Ũ of Gω as

[Ũ (z,
a,
v,R)φ]( 
x) = z−1 eim
v·( 
x−
a)φ(R−1( 
x − 
a))

where φ ∈ L2(R3, d 
x).
Clearly a POVM E is covariant with respect to U if and only if E is covariant with respect

to Ũ . The classification of such POVMs is given in corollary 5. We only have to check that
the representation Ũ is square-integrable (compare with [12]). Indeed, an invariant measure
of Gω is

dµGω
(z, 
a, 
v,R) = m

(2π)3
dz d
a d
v dR

where dz and dR are normalized Haar measures in T and in SO(3), respectively. Moreover,
if φ ∈ L2(R3, d 
x), we have∫

Gω

|〈φ, Ũ (z,
a,
v,R)φ〉|2 dµGω
(z, 
a, 
v,R)

=
∫

R3×P3×SO(3)×T

|z〈φ, Ũ (1,
a,
v,R)φ〉|2 m d
a d
v dR dz

(2π)3

=
∫

R3×P3×SO(3)

∣∣∣∣
∫

R3
φ( 
x) e−im
v·( 
x−
a)φ(R−1( 
x − 
a)) d 
x

∣∣∣∣2
m d
a d
v dR

(2π)3

=
∫

R3×SO(3)

[∫
P3

|F(φ(·)φ(R−1(· − 
a)))(m
v)|2m d
v
]

d
a dR

=
∫

R3×SO(3)

[∫
R3

|φ( 
x)φ(R−1( 
x − 
a))|2 d 
x
]

d
a dR = ‖φ‖4.

Here F denotes the Fourier transform.
Then, choosing dµGω/H (
a, 
v) = m

(2π)3 d
a d
v, one has dŨ = 1, and every Ũ -covariant
POVM based on Gω/H has the form

ET (Z) = m

(2π)3

∫
Z

Ũ (1,
a,
v,I )T Ũ ∗
(1,
a,
v,I ) d
a d
v (22)

for all Z ∈ B(Gω/H), where T is a positive trace one operator commuting with Ũ |T×SO(3).
Clearly, T commutes with Ũ |T×SO(3) if and only if it commutes with U |SO(3). Taking
into account the identification between X and Gω/H given by equation (21), the proof of
theorem 3 is complete.

Remark 6. One can prove that the representation Ũ is square-integrable by an abstract
argument. Indeed, Gω is the semidirect product of the normal Abelian closed subgroup
T × R3 and the closed subgroup V3 ×′ SO(3). Moreover, Ũ is the representation unitarily
induced by σ from T × R3 × SO(3) to Gω, where σ is the representation of T × R3 × SO(3)

acting on C as

σ(z, 
x,R) = z−1.

The corresponding orbit in the dual group T̂ × R3 = Z × P3 is O = {−1} × P3. Since O
has a strictly positive measure (with respect to the Haar measure of Z × P3) and σ |SO(3) is
square-integrable, a theorem proved in [13] assures that Ũ is square-integrable.
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